Chapter 5 Study Questions

NOTE: Vapor Pressure of Water Chart is on the back of this page.

1. A sample of air collected at STP contains 0.039 moles of $\mathrm{N}_{2}, 0.010$ moles of O_{2}, and 0.001 moles of Ar. (Assume no other gases are present.)
a) Find the partial pressure of O_{2}.
b) What is the volume of the container?
2. A sample of hydrogen gas $\left(\mathrm{H}_{2}\right)$ is collected over water at $19^{\circ} \mathrm{C}$.
a) What are the partial pressures of H_{2} and water vapor if the total pressure is 756 mm Hg ?
b) What is the partial pressure of hydrogen gas in atmospheres?
3. If $600 . \mathrm{cm}^{3}$ of H_{2} at $25^{\circ} \mathrm{C}$ and $750 . \mathrm{mm} \mathrm{Hg}$ is compressed to a volume of $480 . \mathrm{cm}^{3}$ at $41^{\circ} \mathrm{C}$, what does the pressure become?
4. Find the density of helium gas at STP.
5. a) Write a balanced chemical equation for the reaction of butane gas with oxygen gas to form carbon dioxide and water vapor.
b) How many liters of oxygen are required to produce 2.0 liters of CO_{2} ?
c) How many liters of CO_{2} are produced from 11.6 g of butane at STP ?
d) How many molecules of water vapor are produced from 5.6 liters of butane gas at STP?
6. Find the molar volume of a gas at $68^{\circ} \mathrm{C}$ and 2.00 atmospheres pressure.
7. How many liters of methane are there in 8.00 grams at STP?
8. Calculate the density of carbon dioxide at 546 K and 4.00 atmospheres pressure.
9. What volume of O_{2} at $710 . \mathrm{mm} \mathrm{Hg}$ pressure and $36^{\circ} \mathrm{C}$ is required to react with 6.52 g of CuS ?

$$
\mathrm{CuS}(s)+2 \mathrm{O}_{2}(g) \rightarrow \mathrm{CuSO}_{4}(s)
$$

10. What is the molar mass of a gas if 7.00 grams occupy 6.20 liters at $29^{\circ} \mathrm{C}$ and $760 . \mathrm{mm} \mathrm{Hg}$ pressure?
 volume of 12.0 g of CH_{4} at the same temperature and pressure?
11. To prepare a sample of hydrogen gas, a student reacts 7.78 grams of zinc with acid:

$$
\mathrm{Zn}(s)+2 \mathrm{H}^{+}(a q) \rightarrow \mathrm{Zn}^{2+}(a q)+\mathrm{H}_{2}(g)
$$

The hydrogen is collected over water at $22^{\circ} \mathrm{C}$ and the total pressure of gas collected is 750 . mm Hg . What is the partial pressure of H_{2} ? What volume of wet hydrogen gas is collected?

Summary of Chapter 5: Gases

Kinetic-molecular theory
pressure
barometer, manometer
temperature
absolute zero temperature
relationship between pressure, volume, temperature
Boyle's Law
Charles' Law
Ideal Gas Law
$\mathrm{R}=0.08206 \mathrm{Latm} / \mathrm{mol} \mathrm{K}$
molar volume
STP
molar volume @ STP = 22.4 L
molar mass and density of a gas
gas stoichiometry
partial pressure
formulas:
$\mathrm{P}_{\text {total }}=\mathrm{P}_{\mathrm{x}}+\mathrm{P}_{\mathrm{y}}+\ldots$
$\frac{P_{1} V_{1}}{T_{1}}=\frac{P_{2} V_{2}}{T_{2}}$
$\mathrm{PV}=n \mathrm{RT}$
$\mathrm{d}=\frac{m m}{m V}$
$P_{1}=\left(\frac{n_{1}}{n_{T}}\right) P_{T}$

Vapor Pressure of Water											
Temp $\left({ }^{\circ} \mathrm{C}\right)$	15	16	17	18	19	20	21	22	23	24	25
$\mathrm{P}_{\mathrm{H}, \mathrm{O}}(\mathrm{mm} \mathrm{Hg})$	13	14	15	15	16	18	19	20	21	22	24

